Tom van Deelen

PhD Candidate
Employed since: November 2014
Phone: +31 6 2273 6385
Room: 4th floor study area



Supported cobalt nanoparticles to elucidate structure-performance relationships in the Fischer-Tropsch synthesis

Sponsor: Shell Global Solutions
Promotor: Prof. dr. ir. Krijn de Jong

In the Fischer-Tropsch synthesis (FTS), synthesis gas (CO and H2) is converted into hydrocarbon products over transition metal catalysts. The FTS is a highly relevant research topic in light of the depleting fossil fuel reserves and the demand for ultraclean transportation fuels and has therefore attracted considerable attention of the scientific community over the past decades. Supported cobalt catalysts are typically applied for long-chain hydrocarbon synthesis in FTS [1].

Much research has been devoted to understanding the effect of the structure of  cobalt nanoparticles (NPs) on its catalytic performance. For example, a maximum in activity of cobalt NPs exists at a certain particle size (~6 nm) despite increasing specific cobalt surface area for smaller particles. This observation is known as the cobalt particle size effect [2]. However, the influence of the initial shape of the NPs, which is related to the exposed crystal planes and the number of edge and corner sites, is largely unknown. Proper control of the NPs size and shape is required to thoroughly investigate such structural aspects.

In this project, we have started off by using colloidal synthesis techniques to obtain cobalt NPs of uniform size and specific shapes. These well-defined NPs will subsequently be deposited on suitable support materials. Extensive characterization of the supported NPs will be combined with catalytic testing in FTS to assess the catalytic performance (activity, selectivity and stability). Via this approach, it is anticipated that more insight into structure-performance relationships will be gained.

[1] A.Y. Khodakov et al., Chem. Rev. 107, 1692-1744 (2007)
[2] G.L. Bezemer et al. J. Am. Chem. Soc. 128, 3956-3964 (2006)
[3] V. Iablokov et al., Nano Lett. 12, 3091-3096 (2012)



2014 –
Present PhD student in the group of Prof. dr. ir. K.P. de Jong, Inorganic Chemistry and Catalysis, Utrecht University
Research topic: supported cobalt nanoparticles to elucidate structure-performance relationships in the Fischer-Tropsch synthesis

2012 – 2014
Master Nanomaterials: Chemistry and Physics, Utrecht University
Master thesis: ‘Niobia-Promoted Co/CNT Catalysts for the Fischer-Tropsch Synthesis’
Research internship at Albemarle Catalysts Company b.v., Amsterdam, The Netherlands

2009 – 2012
Bachelor Chemistry, Utrecht University
Bachelor thesis: ‘Base metal catalyzed hydrothermal processing of biomass derived feedstock under alkaline conditions’

2003 – 2009
Secondary school: Stedelijk Gymnasium Johan van Oldenbarnevelt, Amersfoort, The Netherlands

Born in Soest, The Netherlands on the 9th of December


Xie, J; Paalanen, P P; van Deelen, T W; Weckhuysen, B M; Louwerse, M J; de Jong, K P

Promoted cobalt metal catalysts suitable for the production of lower olefins from natural gas Journal Article

Nature Communications, 10 (1), 2019, (cited By 0).

Links | BibTeX

Deelen, Van T W; Su, H; Sommerdijk, N A J M; Jong, De K P

Assembly and activation of supported cobalt nanocrystal catalysts for the Fischer-Tropsch synthesis Journal Article

Chemical Communications, 54 (20), pp. 2530-2533, 2018, (cited By 1).

Links | BibTeX

Deelen, Van T W; Nijhuis, J J; Krans, N A; Zečević, J; Jong, De K P

Preparation of Cobalt Nanocrystals Supported on Metal Oxides to Study Particle Growth in Fischer-Tropsch Catalysts Journal Article

ACS Catalysis, 8 (11), pp. 10581-10589, 2018, (cited By 0).

Links | BibTeX

Mejía, Hernández C; van Deelen, T W; de Jong, K P

Activity enhancement of cobalt catalysts by tuning metal-support interactions Journal Article

Nature Communications, 9 (1), 2018, (cited By 1).

Links | BibTeX

Oschatz, M; Hofmann, J P; van Deelen, T W; Lamme, W S; Krans, N A; Hensen, E J M; de Jong, K P

Effects of the Functionalization of the Ordered Mesoporous Carbon Support Surface on Iron Catalysts for the Fischer–Tropsch Synthesis of Lower Olefins Journal Article

ChemCatChem, 9 (4), pp. 620-628, 2017, (cited By 12).

Links | BibTeX

Oschatz, M; Deelen, Van T W; Weber, J L; Lamme, W S; Wang, G; Goderis, B; Verkinderen, O; Dugulan, A I; Jong, De K P

Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gas Journal Article

Catalysis Science and Technology, 6 (24), pp. 8464-8473, 2016, (cited By 7).

Links | BibTeX

Haasterecht, Van T; Deelen, Van T W; Jong, De K P; Bitter, J H

Transformations of polyols to organic acids and hydrogen in aqueous alkaline media Journal Article

Catalysis Science and Technology, 4 (8), pp. 2353-2366, 2014, (cited By 12).

Links | BibTeX